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T a b l e  3. Test-structure results 

For each structure we give: the value of the final residual Res; the number of wrong estimates (error) for the one-phase seminvariants 
of first rank [SSl( l)]  included in the NRIF reflections; the number of errors (Errortot) for one-phase seminvariants of first rank [SSl(1)tot 
is their number: if SS1 (l)tot > 1000, the calculations are limited to the first 1000] included in the N RIFto t measured reflections. 

Res SS1 ( 1 ) Error N RI Fro t SS1 ( 1 )to, Errortot 
RH5 0.25 92 0 1420 441 13 
FREI ES 0.26 48 0 972 148 44 
C U PP 0.27 86 0 7455 1000 47 
AGI 0.27 60 0 11463 1000 45 
TRICL 0.46 22 4 2425 196 51 
BAVO 0.07 28 0 620 57 1 

Table 4. Results for  BA VO 

For each one-phase seminvariant of  the second rank for BAVO 
the IE[ values, the true and the estimated phases and the G values 
are given. 

h k l [El ~ .... q~a~c G 

2 6 2 1.8 192 171 2.95 
2 2 4 1.41 6 9 1.92 
8 2 2 1.30 179 181 1.84 
2 4 4 1.29 6 -19 1.71 
8 4 4 1.25 333 18 1.45 
4 6 2 1.23 357 8 1.38 

scaling procedure (s = sin 0/A). Thus, any reflection 
h satisfying h(l-R,,)= H and the Harker vectors Uj 
can be used directly for calculating Fpu and then for 
estimating FH. 

If C,, commutes with all C~ operators then (R , , -  
I ) C ~ r / = C ~ ( R , - I ) r j = C ~ U j ( n ,  1) a n d  t h e  u s u a l  
a l g e b r a  o f  t h e  s t r u c t u r e  f a c t o r s  c a n  b e  u s e d .  T h u s  

(A.  1 ) r e d u c e s  to  

! 
FpH ~-- ( f (H) / f (h) )F 'ph,  ( A.2) 

! 
where Fph is a structure factor of index h in which 
the atomic positions are replaced by the interatomic 
v e c t o r s  Uj .  

References 

ALTOMARE, A., CASCARANO, G. & GIACOVAZZO, C. (1992). 
Acta Cryst. A48, 30-36. 

ARDITO, G., CASCARANO, G., GIACOVAZZO, C. ~. LultS, M. 
(1985). Z. Kristallogr. 172, 25-34. 

BACHECHI, F., OTT, J. & VENANZI, L. M. (1986). Unpublished. 
BURLA, M. C., CAMALLI, M., CASCARANO, G., GIACOVAZZO, 

C., POLIDORI, G., SPAGNA, R. & VITERBO, D. (1989). J. Appl. 
Cryst. 22, 389-393. 

CAMALLI, M., CARUSO, F. & VENANZI, L. M. (1985). Unpub- 
lished. 

CAMALLI, M., CARUSO, F. & VENANZI, L. M. (1986). Unpub- 
lished. 

CASCARANO, G., GIACOVAZZO, C., LuI( ' ,  M., PIFFERI, A. & 
SPAGNA, R. (1987). Z. Kristallogr. 179, 113-125. 

G1ACOVAZZO, C. (1977). Acta Cryst. A33, 933-944. 
GIACOVAZZO, C. (1978). Acta Cryst. A34, 562-572. 
GIACOVAZZO, C. (1983). Acta Cryst. A39, 685-692. 
GIACOVAZZO, C. (1991). Acta Cryst. A47, 256-263. 
ITO, T. & NOVACKI, W. (1974). Z. Kristallogr. 139, 85-102. 
KOBELT, D., PAULUS, E. F. & KUNSTMANN, W. (1974). Z. 

Kristallogr. 139, 15-32. 
PAVELCiK, F. (1988). Acta Cryst. A44, 724-729. 
PAVELCiK, F. (1989). J. Appl. Cryst. 22, 181-182. 
PAVEtZ'iK, F. (1990). J. Appl. Cryst. 23, 225-227. 
SIMPSON, P. G., DOBROTT, D. & LIPSCOMB, W. N. (1965). Acta 

Cryst. 18, 169-179. 
ULICK,/~, !~,., PAVEL('iK, F. & HULM, K. (1987). Acta Cryst. C43, 

2266-2268. 
WILSON, A. J. C. (1949). Acta Cryst. 2, 318-321. 
ZIMMERMANN, H. (1988). Z. Kristallogr. 183, 113-122. 

Acta Cryst. ( 1 9 9 2 ) .  A 4 8 ,  5 0 0 - 5 0 8  

The Enumeration and Symmetry-Significant Properties of Derivative Lattices 

BY JOHN S. R U T H E R F O R D  

Department of  Chemistry, University of  Transkei, Private Bag X 1, Unitra, Umtata, Transkei, South Africa 

(Received 20 January 1991 ; accepted 20 January 1992) 

Abstract  

For a lattice in two dimensions, the number of distinct 
derivative lattices of index n is given by the arithmetic 
function ol (n)  which is the sum of the divisors of n, 
i n c l u d i n g  1 a n d  n. T h e  f u n c t i o n  o ' l ( n )  h a s  as  its 

g e n e r a t i n g  f u n c t i o n  t h e  D i r i c h l e t  s e r i e s  i ( s ) i ( s -  1) 

where if(s)~-~.~=1 n "~; is the Riemann zeta function. 
That is, i ( s ) i ( s  - 1) = ~ = l  crl( n)n -~. The probability 
that s points chosen at random on the two- 
dimensional lattice do not lie on any of the derivative 
lattices so enumerated is therefore [ i f ( s ) i f ( s -1) ]  -1 
The equivalent results in three dimensions are: the 
arithmetic function ~dl. [n/d]2Crl(d),  where the sum 

0108-7673/92/040500-09506.00 © 1992 In t e rna t iona l  Un ion  o f  C r y s t a l l o g r a p h y  



JOHN S. RUTHERFORD 501 

is over the divisors d of n, the generating function 
~ ( s ) ~ ( s - 1 ) ~ ( s - 2 )  and the probability [sr(s)~'(s - 
1)~'(s-2)] -1. Applied to the reciprocal lattice, this 
provides a method of estimating whether such a par- 
ticular non-primitive arrangement of strong reflec- 
tions could occur by chance. This number-theory 
approach may be adopted to the enumeration of 
derivative lattices in the general case. However, when 
considering potential sublattices in practice, only 
those belonging to the same Laue class are of any 
interest, in which case the general formula only holds 
for the Laue class 1. For all other space groups, the 
effect must be considered of choosing s points at 
random together with all the other points related to 
them through the diffraction symmetry. This leads to 
a generating function that is identical for space groups 
belonging to the same Patterson symmetry, that is 
Laue class and lattice type. In all 24 cases, the form 
is A ( s ) / F ( s )  where F depends only on the Laue class 
and is a product of infinite series, chiefly zeta func- 
tions, but also Dirichlet L functions. A(s)  in turn 
derives from the lattice type, but varies depending on 
what other lattice types are available as potential 
sublattices in that Laue class. It represents an adjust- 
ment to one prime-number term in the infinite- 
product form of F, it being the p - -2  term in the 
monoclinic, orthorhombic, tetragonal and cubic crys- 
tal classes and the p = 3  term in the trigonal and 
hexagonal classes. The numerous results concerning 
generating functions, arithmetic functions and prob- 
abilities are given in the tables. 

ation of all derivative lattices of a given lattice, subject 
to the appropriate symmetry restrictions. This is the 
theory of multiplicative arithmetic functions (see, for 
example, Hardy & Wright, 1979). In particular, the 
number of derivative lattices generated by the rules 
of Billiet & Rolley-Le Coz (1980) for the triclinic case 
and of Bertaut & Billiet (1979) for the more symmetric 
cases can be found for any index by the use of the 
appropriate Dirichlet series as generating functions. 

O n e - d i m e n s i o n a l  case  

It is appropriate to begin with the one-dimensional 
analogue, which is the probability that s random 
integers have no common factor other than one. This 
is 

oo  oo o~  

P(s, 1 ) = l - Z P [ S + Z  E (PiPj) -s 
i i j > i  

i j > i  k > j  

where the ps are the prime numbers. If we rearrange 
the terms in order of increasing denominator, we get 

P(s, 1) = 1 - 2  -~ - 3  -~ - 5-~ + 6 - '  - 7 - ~ +  10-~. . . ,  

which shows that there is a term in the series for each 
'square-free' number. In fact the series is based on 
the Moebius function, that is 

P(s, 1 )=~ , t z (a )a  -s 

I n t r o d u c t i o n  

It has long been recognized that rational dependence 
of atomic fractional coordinates can give rise to prob- 
lems with crystallographic direct methods, as a result 
of differences in the average intensities of different 
reflection classes. Hauptmann & Katie (1959) sug- 
gested renormalization of the intensities of the various 
parity classes within the reciprocal-lattice points as 
the solution in these cases and the standard direct- 
methods programs evaluate the relevant averages. 
However, various alternative approaches to the phase 
problem in cases of rational dependence have since 
been advanced, an excellent survey of the relevant 
literature having been given by Cascarano, 
Giacovazzo & Lui~ (1985). In that paper they present 
perhaps the only attempt so far to provide an objective 
method, suitable for implementation on computer, 
for recognizing the existence of the phenomenon in 
more general cases. The original intention of the work 
described here was to derive a rational-dependence 
screening test, operating in an alternative and com- 
plementary way to this existing procedure. 

However, as the work progressed, it became clear 
that the approach taken relied on the existence of a 
powerful number-theory technique for the enumer- 

where 

/z(a) = ( -1)  a(a) if a is square free 

= 0 otherwise 

and .Q(a) is the number of prime factors of a, i.e. r 
if a = PlP2P3 • • • P,. 

Fortunately, this series can be related to one which 
is more easily evaluated and more frequently tabu- 
lated, because the Moebius function is the inverse 
under Dirichlet multiplication of the Riemann zeta 
function, where the term in a -~ is 1 for all a. As a 
result of this, the two corresponding series are also 
inverses, i.e. 

P(s, 1 )=[~(s ) ] - '  

This series converges for s > 1 and is analytic for s 
even. 

A further formulation which will be useful is the 
so-called infinite product form, in which the function 
is expressed as a product over the primes 

~'(s) = l-I (1 -p-S)-1;  
P 

P(1, s ) = [ I  ( 1 - p - S ) .  
P 



502 DERIVATIVE LATTICES 

Yet another approach is to note that, in the theory 
of arithmetic functions, the function 

F(s)  = ~  a,,n -~ 
n 

is called the generating function of the arithmetic 
function a , ,  where n is a natural number. In this case 
a ,  = 1 for all n and simply represents the number of 
occurrences of the number n. In the case of lattices 
in more than one dimension, a ,  will represent the 
number of distinct lattices of index n and the inverse 
of the generating function will be the associated prob- 
ability. In fact, the generating function can be con- 
sidered to play the same role as the partition function 
in statistical mechanics, for the probability that n is 
the highest common divisor (HCD) of s numbers 
taken at random is 

a"n-S/,,=l ~ °t"n-~= ~-l(s)n-S 

and the probability that 1 is the HCD is ~'-l(s). 
It should be noted at this point that the variable s 

has no significance as far as the enumeration proper- 
ties of the function are concerned, but has an impor- 
tant physical interpretation in its statistical aspect, in 
which case the convergence of the series for given s 
must be considered. 

T w o - d i m e n s i o n a l  case  

The two-dimensional case is considerably more com- 
plicated, but for a very simple reason. The numbers 
that contain repeated prime factors are ignored in the 
one-dimensional case, because the probabilities 
associated with each are correctly dealt with in the 
series of square-free numbers. This is true because 
each number that contains repeated factors can be 
referred uniquely to one of its factors that is square 
free, that number being the product of all its prime 
factors taken once. That is, a general number 

a b PIP2 .. .  P'R is included with PIP2... PR. 
However, in two (and higher) dimensions, we must 

consider the structures associated with particular lat- 
tices of index (unit-cell area ratio) n. These Abelian 
groups were recognized by Harker (1978), in his 
studies of colour symmetry, and were hence called 
by him the 'colour lattice groups'• However, it was 
subsequently shown by Rolley-Le Coz, Senechal & 
Billiet (1983) that the same groups describe the 
arrangements giving rise to derivative lattices for a 
wide range of phenomena• A future paper will con- 
sider the use of Dirichlet series to classify lattices 
according to these underlying Abelian groups 
(Rutherford, 1992)• 

Returning to the factorization of two-dimensional 
lattices, one has that their factorization into lattices 
whose indices are the powers of distinct primes is 
unique and a problem is only encountered when 

further factorization is attempted and a particular 
prime factor is repeated• As was recognized by Kucab 
(1981), the lattice group corresponding to a repeated 
prime factor pC,,), in a space of d dimensions, can 
have that factor distributed over the lesser of a and 
d dimensions. For example, in two dimensions, the 
group structure of the factor group that represents 
vector addition of reciprocal-lattice points with 
respect to a sublattice can have the forms: 

G~2= C~2; G'.2= C~®C.; 
Gp~ = Cp3 ; G'p3 = Cp2® Cp ; 

• • ~ " ,  = C / ®  Cp2. G.4=C. 4, G;4=Cp3®Cp,-p 

C, is the cyclic group of order n. 
The important point for the present argument is 

that not all of these structures may be directly referred 
to a unique lattice of index p and, in fact, the best 
that can be done is to refer each cycle group to its 
own prime-factor group, for example 

Cp includes Cp~, Cp3, C / , . . .  ; 
t t t  G~,~ includes G;~, Gp,, Gp4,... etc. 

This means that we do not simply consider one occur- 
rence of p in calculating probabilities, but must iden- 
tify, at least in principle, all occurrences of lattices 
with underlying structures up to d such independent 
factor groups• Fortunately, we have the work of Biiliet 
& Rolley-Le Coz (1980) to draw on here, since they 
have shown how the number of lattices of each index 
may be derived from a consideration of the triangular 
form of the associated matrix. The extension of this 
to distinguish between the alternative possible struc- 
tures is relatively straightforward. An example is for 
index p2 in two dimensions, the Billiet & Rolley-Le 
Coz procedure predicts (p2+p+ 1) lattices and, in 
particular, for pZ= 22 the following seven matrices: 

;][; °4] 
Examination of the corresponding lattices shows that 
only one of these has the structure C2® C2 and, for 
two dimensions in general, there will be only one 
lattice with structure Cp ® Cp, but (p2 + p) lattices with 
structure Cp~. Only when the matrix elements all have 
a common factor will the group structure consist of 
the product of two cycles. 

The above analysis is essential, in that the normal 
assumption of independent probabilities does not 
apply in some of the cases to be considered and it is 
necessary to have rules to identify the exceptions, as 
follows. 

(1) Probabilities are independent for all lattices of 
index p" for distinct p. 
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(2) All lattices involving cycle indices p",, 
p-2, . . .  with at least one n > 1, but for only one value 
of p, are sublattices of one unique lattice where the 
cycle indices are all p and can therefore be included 
in that lattice for probability purposes. 

(3) The unique lattice of d independent index-p 
cycles is a sublattice of all other lattices involving 
index-p cycles only, such as in rule (2). This implies 
that only the structures Cp, Cp ® Cp,... up to d factor 
groups need be considered. 

(4) Probabilities are also independent if any lattice 
of index p", consisting of n independent cycles, is a 
maximal sublattice of only two independent lattices 
of lower index. 

(5) Otherwise, the probabilities associated with the 
lattices in rule (3) are not independent and must be 
calculated for the explicit tree of sublattices involved. 

The relevant tree for p = 2 in two dimensions is 
shown in Fig. 1. The matrix [2 0/0 2] represents a 
lattice of index 4 which is a sublattice of all three 
lattices of index 2. This means that the lattice is not 
counted once at the higher level, as it would if it 
could be subsumed in a lattice of lower index, or 
twice, as it would if the probabilities were indepen- 
dent, but three times. This becomes (p + 1) times for 
a general prime p, and therefore p occurrences must 
be subtracted to correct the count. This gives as the 
probability in two dimensions: 

P(2, s) = l-I [1 - ( p +  1)p -~ + p  x p-ES] 
p 

= I-I (1 - p - ~ - p - ' + l + p - 2 5 + l )  
p 

= I] ( 1 - p - ' ) ( 1 - p  -~+')  
p 

= [ C ( s ) ~ ' ( s -  1 ) ] - ' .  

This is convergent for s > 2. 
This formula can be justified in another way. The 

probability that the lattice defined by the chosen 
points is primitive in the direction of the first point 
chosen is simply the one-dimensional case. Now, this 
first point cannot help define the second basis vector, 
so it is the (s - 1) remaining points that influence the 
primitivity of the lattice in this second direction, 
giving a second one-dimensional probability of 
~ ' -~(s-1) .  The overall probability is the product of 

2a I 

] 
/ j  

W . . . . ~  

j 

i 

" " --.. I . . - -  " 
r -  ~:--d..<_ : : L ~  

2a, ?is 

the two, as above. This shows that (,(s)~(s- 1) is the 
generating function of an a , ,  which is the number of 
distinct lattices of index n. However, this arithmetic 
function is known in number theory as trl and is the 
sum of the divisors of n (see Hardy & Wright, 1979). 
This correspondence may be readily explained by 
reference to the triangular matrix form, since each 
divisor d of n will occur exactly d times in the upper 
left corner of the matrix. 

Three-d imens iona l  case 

The three-dimensional case follows in the same way 
as above. The number of lattices of the relevant struc- 
tures are ( p 2 + p + l )  for Cp, ( p 2 + p + l )  for Cp(~Cp 
and only 1 for Cp® Cp® Cp. This leads to 

P(3, s ) =  [I { 1 - ( p Z + p +  1)p-S 
P 

+(p2+p+ 1)[(p + 1 ) -  1]p -2' 

-l[(p3+p2+p)-(p2+p+ 1)+ l]p -3'} 

= l-I [ l _(p--, + p-S+~ + p -.'+2) 
p 

+ ( p-ES+ 1 + p -2s+2 ..1.. p - - 2 s + 3 )  __ p -3.,+3] 

=l-] (1-P-")(1-P-~+~)(1-P-~+2) 
p 

= [~r(s)sr(s- 1)~r(s - 2 ) ]  -1 . 

This is clearer when referred to Fig. 2, the p = 2 tree 
in three dimensions. The various terms enclosed in 
square brackets in the first line of the derivation above 
represent the number of times each lattice has been 
counted at the various higher levels. A lattice of 
Cp Q Cp type is a maximal sublattice of (p + 1) of the 
Cp type, while the sole Cp® Cp® Cp-type lattice is a 
maximal sublattice of all (p2 + p + 1) of the Cp ® Cp 
type, as well as being a sublattice of all (p2+p + 1) 
of the Cp type. 

Fig. 1. T h e  index-4  s q u a r e  la t t ice  and  its supe r l a t t i ces .  Fig. 2. T h e  index-8  cub ic  la t t ice  and  its super la t t i ces .  
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It is convenient to know the arithmetic function 
generated by ~ ( s ) ~ ( s - l ) ~ ( s - 2 ) ,  as this gives the 
required number of occurrences for any value of n. 
We begin with a more general result that can be 
derived by methods outlined by Hardy & Wright 
(1979), who define the arithmetic functions irk(n) 'the 
sum of the kth powers of the divisors of n' and dk(n), 
'the number of ways of expressing n as a product of 

k positive factors (of which any number may be 
unity), expressions in which only the order of the 
factors is different being regarded as distinct'. These 
definitions include as special cases the number of 
divisors of n, expressible either as d2(n) or as tr0(n), 
as well as oh(n), which was introduced earlier. 

It is then possible to show that, subject to certain 
restrictions, 

~(s a , ) =  Z c~' -" - -  n , 

i = 1  n = !  [_ j = l  i=1  

where ]-I k ~=~ c o is the j th  representation of n as k 
factors, in the sense of the definition of dk(n). The 
restrictions that apply are that 0 -  < a~-< ( s -  1) for all 
i, where the upper limit ensures convergence. 

Special cases of the above are two formulae in 
Hardy & Wright (1979)" 

oo 

sr2(s) = 2 dk(n)n-" 
n = l  

and 

C(s)C(s-a)= E ,ra(n)n -~, 
r l = l  

which of course includes the two-dimensional case. 
Our present expression is of the form 

~( s ) r , ( s -a )~ ( s -b )=  ~ a,,n-', 
n = !  

for which 

a,,= ~, [n/d]atrb(d)= ~. [n/d]btra(d). 
din din 

Here the symbol din implies a sum over the divisors, 
denoted d, of n, and the two forms of the expression 
for a ,  arise depending on the grouping of the triple- 
product terms in the expression 

d3(n)  

Otn 2 0 a b C lj C2j C3j. 
j = l  

In particular, ¢(s)¢(s-  1)~'(s-2) generates 

~. [n/dl2tr,(d) = ~, [n/dl~rdd), 
din din 

which is the desired result. The left-hand expression 
corresponds to the triangular matrix form of Billiet 
& Rolley-Le Coz (1980), if n/d  is taken as the first 
diagonal element. 

The effects of symmetry 

The required probabilities each constitute a Dirichlet 
series, that is, an infinite series in n -s, where the ns 
are the natural numbers and s is the number of sets 
of symmetry-related points considered. To evaluate 
these probabilities, it is best to express the series as 
a product of simpler known series, such as the zeta 
functions used above. Two general approaches to this 
type of problem were implied there; it is now 
profitable to present them explicitly. 

The first approach is to recognize that such a 
Dirichlet series is multiplicative in the number-theory 
sense, that is, multiplicative in the primes, and can 
therefore be expressed as an infinite product 

G-l(s)=l-I h(p,s),  
p 

where the function h may be further factored into a 
product of terms [1 ± f ( p ,  s)] ±1, where t h e f  are fairly 
simple functions of s and the prime numbers p. 
(Above, they were p- ' ,  p-'*~ and p-S+2 only, and 
rules were given to achieve the appropriate factoriz- 
ation in the triclinic case.) The next step in this 
approach is to reorder the terms of G-I(s)  as a 
product of infinite products of suitable form, perhaps 
along with additional terms in specific primes, so that 
the factors that are standard Dirichlet series (~" and 
L functions) become apparent. 

The second approach is to ignore explicit factoriz- 
ation of n, and seek to express the number of occur- 
rences of appropriate derivative lattices of index n 
as an arithmetic function. The generating function of 
g is then the inverse under Dirichlet multiplication 
of the required probability function, and the problem 
reduces to identifying g and, from it, G. 

In deriving the results presented here, the first 
method was used to find a general form of the generat- 
ing function for each Laue group, in which the h 
function obeys the same formula for all primes and 
which represents the number of P lattices of index n 
that are sublattices of the basic P lattice according 
to some symmetry rule. The second approach was 
then applied to deduce the proper modification in 
one prime-number term to allow for all the sublattices, 
of various centrings, that occur for the particular 
lattice considered. 

Once the general form for the Laue group was 
established, an arithmetic function was set up for the 
P lattice to allow for centred lattices. For example, 
for p2/m, there is a second term for the C-lattice type: 

g ( n ) =  Y. t r l (d)+3 ~ o5(c), 
din 2cln 

P latt ices C lattices 

where the factor 3 enumerates the three lattices A, I 
and C, all of them belonging to the C-lattice type in 
monoclinic symmetry. The modifications for P lat- 
tices are straightforward. In the monoclinic case, the 
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p = 2 term is altered by a factor (1 + 3 x 2 -~). A basic 
lattice that is centred is generally more difficult to 
handle ,  for, al though it is useful to relate the sub- 
lattices to an intermediate  P sublattice for which the 
function is already known, it is not always possible 
to do this for all sublattices; the following example  
of C 2 / m  shows this. 

The index-2 sublattices of a C 2 / m  lattice are three 
in number ,  namely the primitive lattice of the same 
d imens ion  and two centred cells, C a n d / ,  with c' = 2c. 
The corresponding funct ion h-1(2, s) can therefore 
be constructed from the sum of three terms: 

1 + 2-"(1 + 3 x 2- ~)[(1 - 2"~)2(1 - 2 x 2-~)] - '  
( i n d e x  1 ) ( i n d e x - 2  P la t t i ce  a n d  its s u b l a t t i c e s )  

+ 2 x 2 - ~ [ l + 2 x 2 - ~ + 4 x 2 - 2 ' . . . ] .  
( a d d i t i o n a l  (" l a t t i ces )  

The third term sums to 2 x 2  -~ [ 1 - 2 x 2  '] -~ and the 
sum of all three simplifies to 

( 1 - 2  - ~ + 4 x 2  2 ~ ) / [ ( 1 - 2 - ~ ) 2 ( 1 - 2 x 2 - ~ ) ] ,  

where the denomina tor  derives from the expression 
for general  p. It is possible,  therefore, to write for 
C 2 / m  

g ( n ) =  2 c r , ( d ) - 2  ~ o ' , ( c )+4  2 oh(b). 
din 2cln 4bin 

However, the individual  terms no longer represent 
specific types of sublattice. 

Results 

These are quoted as the probabi l i ty  expression;  the 
generat ing function will be the inverse of this. 

Two-dimensional nets 

(1) P2. This case was considered above. The 
appropria te  expression is 

[s r (s)~ ' (s -1)]  - '  or l-I ( 1 - P - ~ ) ( 1 - P - ~ + ~ ) .  
P 

(2) P2mm. If we were to consider  only sublattices 
having the symmetry P2mm, we would then have two 
independent  coordinates,  and the probabi l i ty  would 
be [sr2(s)] -~. However, sublattices of the type C 2 m m  
must also be considered. This means  that all three 
index-2 sublattices are possible, rather than the two 
possible for a general pr ime index. This means  in 
turn that the term ( 1 - 2 - ' )  2 in the infinite-product  
form must be replaced by ( 1 + 2 - ~ ) - ~ ( 1 - 2 - ~ )  2. In 
other words, the final expression is 

(1+2-~)/~2(s) .  

(3) C2mm. Again, this is based on the [~'2(s)]-~ 
form, but this time there is only one appropria te  
sublattice of  index 2. The expression therefore is 
[(1 - 2-~)~'2(s)] - '  

(4) P4. Valid sublattices are here restricted to 
squares in any orientation. Their  number  is therefore 
related to the number  of representat ions of the index 
as a sum of two integer squares,  i.e. n = A2+ B 2, in 
fact it is r (n) /4  where r(n) is the number  of  such 
representations. Four such representat ional  points 
fall on each lattice, namely  (A, B), (B, - A ) ,  ( - A ,  - B )  
and ( - B ,  A). This expression is then 
[~(s)L{s ,x(2)}]  -~, where L{s, X(2)} is the Dirichlet  
L function given by 

1 - 2 " + 3  ~ - 4 - ~ + 5 - ~ - 6  -~ . . . .  

It should be noted that not all values of n are possible 
in this case, the restriction being that, among the 
factors of  n, primes of  the type (+1 mod 4) may only 
appear  to even powers. Thus n may take on only the 
values 

1 , 2 , 4 , 5 , 8 , 9 ,  10, 13, 1 6 , . . . .  

(5) P4mm. The square sublattices here can have 
only two orientations: the same as the original,  or 
rotated by 45 °. All valid sublattices of index p" are 
sublattices of either the rotated sublattice of index 2, 
or of  a sublattice of index p2, p ¢ 2. This means  the 
basic expression is ~'(2s), but modified in the p = 2 
term. In fact, it is 

( 1 - 2 - ' ) / [ (  1 - 2-2~) ~'(2s)]. 

(6) P6. The arguments  are similar  ~o P4, but with 
the number  of representat ions of the form 

n = A2 + B2 + A B  or n = A2 + B Z -  A B  

being involved. [The two are equivalent  quadrat ic  
forms, see for example  Davenpor t  (1952).] Each lat- 
tice contains six points corresponding to such rep- 
resentations, rather than four, and the appropria te  
function involves 

L{s ,x(3)}  = 1 - 2  -S + 4 - ' - 5  -~+7  - s - 8 - L . .  

rather than L{s, X(2)}. Again, there are restrictions 
on the permissible values of  n; here primes of the 
form ( - 1  rood 3) must appear  to even powers in the 
factorization of n. This yields as the permitted values 

1, 3, 4, 7, 9, 12, 13, 16, 1 9 , . . . .  

(7) P6mm. The arguments  are similar  to case (5), 
but the alternative orientat ion is rotated by 30 ° and 
the rotated maximal  sublattice has index 3, therefore 
the p = 3 term is the one affected. The expression is 

(1 - 3-~)/[(1 - 3-2~)sr(2s)]. 

Three-dimensional lattices 

These are treated as reciprocal lattices, but are 
referred to according to the Patterson symmetry of 
the space group. In particular,  the symbols I and F 
describe the centring of the corresponding real basic 
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T a b l e  1. S u m m a r y  o f  r e s u l t s  for  three-dimensional  L a u e  g r o u p s  

The arithmetic f u n c t i o n s  u s e d ,  other than (r t a n d  d3, which are explained in the text, are intended to indicate the number of  representations 
o f  the relevant n u m b e r  in the integer forms: x 2 , f 2 ,  X3, f3 :  A 2 +  B2, A2, A 2 +  B 2 +  AB, A 3 respectively, s~m is t he  m i n i m u m  value of  s 
for which the series converges a n d  $99 its value corresponding to the 99% c o n f i d e n c e  level .  

S y m m e t r y  
p~ 

P2/m 

C2/m 

Pmmm 
C n l m m  

lmmm 
Fmmm 
P4/m 

I4/m 

P4/mmm 

I4/mmm 
P3 

P6/m 

R3 

P31m 

R3m 

P3 m 1, P6/ mmm 

Pm~,Pm3m~ 
Fm3, Fm3mJ 
Ira3, lm3m 

Generating funct ion Arithmetic f u n c t i o n  Smin $99 

~(s)~(s- l ) ~ ' ( s - 2 )  Y. (n/d)2crl(d) 4 10 
din  

1+3x2-S)~2(s)~(s-I)  3, c r l (d )+3  S" (rl(c) 3 10 
d n 2 t i n  

l - 2 - S + 4 x 2 - 2 5 ) ~ ' 2 ( s ) ~ ' ( s - ' l )  ~ o ' l ( d ) -  ~ oh (c )+4  Y. (rl(b) 3 9 
din 2cin at,  In 

1 + 4 x 2-'  + 2 -2')~3(s) d3(n) + d3(n/2) + d3(n/4) 2 10 
1 + 3 x 2 -2~ + 2 x 2 -3~)~'3(s) d3(n) + 3d3(n/4) + d3(n/8) 2 9 
1 + 2 -2` + 4 x 2 -4~)sr3(s) d3(n) + d3(n/4) + d3(n/16) 2 9 
I - 2 x 2 -s + 7 × 2 -2s )~3(s) d3( n ) - 2d3(n/2) + 7d3(n/4) 2 9 

(l+2-~)~2(s)L[s,x(2)] ~ ;c2(d) + ~ ;¢2(c) 2 9 
d , .  2cln 

( I - 2 - ~ + 2 x 2 - ' ) r , 2 ( s ) L [ s , x ( 2 ) ]  S" x2(d) -  3, X2(c)+2 Y x2(b) 2 7 
din 2tin 4b in  

( l+2-~)2~'(s)~(2s)  Y. f 2 ( d ) + 2  Y. f2(c)+  Y. f2(b) 2 9 
din  2cln 4bin 

(I + 2 -2s + 2 x 2 -3.` )~'(s)~r(2s) Y~ f2(d)  + 3, f2(c) + 2Y. f2(b) 2 7 
(I+2x3-5)~2(s)L[s,x(3)] Y. x 3 ( d ) + 2  Y. X3(c) 2 7 

d n  3cn  

~2(s)L[s,x(3)] 3, x3(d) 2 7 
din  

(l-3-~+3x3-25)~2(s)L[s,x(3)] Y x 3 ( d ) -  3" )t ' (c)+3 3, x3(b) 2 7 
din 3 t in  9bin 

( l + 3 x 3 - S + 2 x 3 - 2 s ) s r ( s ) ~ ' ( 2 s )  E f2(d)  +3 ~ f2(c) +2  E f2(b) 2 7 
d n 3c n 9hi , ,  

( l + 2 x 3 - 2 ~ + 3 x 3 - 3 ' ) ~ ( s ) ~ ' ( 2 s )  Y. f 2 ( d ) + 2  3, f2 (c )+3  3, f2(b) 2 7 
d,n 9 c l -  27b in  

( l+3-~)~(s )~ ' (2s )  ,~ f 2 ( d ) +  3, f2(c) 2 7 
d'n 3c:,n 

( 1 + 2 - 5 + 2-25 ) ~'(3 s) f3( n ) +fa(n/2) +f3(n/4)  1 7 

(1 + 2 -2~ + 2-4~)~'(3s) f3(n) +f3(n /4)  +f3(n/16) I 4 

Table 2. Probabilities (x 10  4 corresponding to up to the 99% confidence level) that s reflections define a primitive 
cell for each Patterson symmetry 

s =  1 2 3 4 5 6 7 8 9 
S y m m e t r y  

P i  4673 7413 8758 9401 
P2/m 3060 5980 7856 8901 9446 
C2/m 4488 7451 8835 9456 9741 
Pmmm 1057 3760 6271 7959 8934 9457 
Cmmm 1843 5479 7792 8942 9490 9752 
lmmm 2084 5663 7856 8960 9495 9753 
Fmmm 2397 6699 8741 9498 9786 9904 
P4/m 3228 6349 8124 9053 9526 9763 
I4/m 4611 7881 9131 9618 9823 9916 
P4/mmm 3595 6461 8151 9059 9527 9763 
14/mmm 5135 8021 9162 9624 9825 9916 
P3 3870 7289 8862 9515 9787 9903 
P6/m 4730 7829 9081 9594 9813 9912 
R3 5109 8095 9191 9633 9827 9917 
P31m 4136 7341 8871 9516 9787 9903 
R3m 5460 8154 9199 9634 9827 9917 
P~ml 
P6/mmmJ 5055 7885 9090 9595 9814 9912 

P m ~ , P m 3 m ~  4754 7489 8750 9375 9688 9844 9922 
Fm3, Fm3m J 
lm3, lm3m 6338 9217 9824 9958 

9709 9857 
9723 9862 
9875 9939 
9726 9863 
9878 9940 
9879 9940 

9882 9941 

9882 9941 

10 

9930 
9931 

9931 

or derivative lattice and have their normal meanings 
interchanged in reciprocal-lattice terms. The results 
are collected in Tables 1 and 2. 

(1) Triclinic. This was dealt with above. 
(2) Monoclinic. Monoclinic symmetries combine 

an oblique net with a line and therefore have the 
basic form 

[~'(s)~:(s-  1)]-1[~'(s)] -1 

or [~'2(s)~'(s-1)]- ' .  The p - - 2  term in the infinite- 
product form would be ( 1 - 2 - s )  2 (1 -2 - s+1) ,  but this 
is modified because in P2/m all seven index-2 sub- 
lattices are possible, rather than the four registered 
by the general term above. This case and C 2 / m  were 
discussed previously. 

(3) Orthorhombic. Orthorhombic symmetries have 
three independent axes and therefore have the basic 
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Table 3. The triclinic probability function and the index of the reciprocal lattice defined by the s largest IEI 
values for pyridoxal 5-phosphate oxime dihydrate ( PPOD) and potassium hydroxylaminedisulfonate hydrate 

( KNSS),  for s values up to 10 

P P O D  K N S S  

s P(s, 3) h, k, l I EI I n d e x  h, k, ! I E[ I n d e x  

1 5, 3, 2 3.5 1, 13, iT 6.07 - 
2 i, 4, T 3.4 8, 1 o, 6 6.06 - 
3 5, 5, 1 3.4 57 6, I 1,2 6.02 522 
4 0.4673 5, 1, 3 3.2 57 7, 13, 5 5.94 6 
5 0.7413 4, ], i 3.1 57 ~,, 2, I0 5.46 6 
6 0.8758 o, 2, 3 3.1 57 8, 15, 2 5.42 6 
7 0.9401 3, !, 1 3.1 I 11, 12, I0 5.33 3 
8 0.9709 3, 3, 2 3.0 1 12, 10, 4 5.30 3 
9 0.9857 2, 6, ~, 2.9 1 3, 15, .~ 5.06 3 

I 0 0.9930 5, 3, 2, 2.7 1 2, 9, ~, 5.05 3 

form sr-3(s). The p = 2  term, which is ( 1 - 2  ~) 3, 
assumes three independent sublattices of index 2. In 
fact, all seven are allowed for Pmmm and the argu- 
ment for P2/m can be modified for this case, as that 
for C2/m can be for Cmmm, lmmm and Fmmm. 

(4) Laue group 4/m. The p4 net is combined with 
a line to give [~'2(s) L{s, g(2)}] -1. However, this does 
not take into account the possible F reciprocal sublat- 
tice of index 2 for P4/m, while for 14/m there is 
only one valid sublattice of this index. 

(5) Laue group 4/mmm. Here it is the P4mm net 
that is combined with a line and the basic form is 
[sr(2s)~'(s)] -~ However, the index-2 sublattices are 
identical to those in the 4 /m  case. 

(6) Laue groups 3 and 6/m. The P6 net is com- 
bined with a line, while there are additional R sublat- 
tices (index 3) to be considered in the trigonal case. 
The basic expression [~2(s)L{s,x(3)}]-~ applies to 
P6/m. [We may note that there is a recurring analogy 
between a trigonal case that involves R lattices and 
a tetragonal case involving an F reciprocal lattice 
(case 4 here)]. 

(7) Remaining trigonal and hexagonal Laue groups. 
Here the P6mm net is combined with a line and these 
are analogous to 4/mmm. 

(8) Cubic. Probabilities in cubic lattices involve the 
function ~'(3s), but with the p =2  terms modified 
according to the other available sublattice types (of 
P, I and F).  In respect of the probabilities, there is 
no distinction between the Laue groups. 

Application 
Table 1 includes for each Patterson symmetry the 
minimum s value for which the appropriate function 
converges, as well as the s value corresponding to 
the 99% confidence level. These values were used as 
limits for Table 2, which lists the actual probabilities 
to four significant figures. The actual application is 
shown in Table 3, which gives the indices of the ten 
lar_gest I E[ values for two real examples in symmetry 
PI:  pyridoxal 5-phosphate oxime dihydrate (Barrett 

& Palmer, 1969), used as an example where direct 
methods apply by Ladd & Palmer (1980), and a 
potassium hydroxylaminedisulfonate hydrate 
(Rutherford, Robertson, Guttormson & Russell, 
1988). In each case the three largest IEI values were 
used to generate a transformation matrix whose deter- 
minant is the index of the relevant derivative lattice. 
To classify the fourth and subsequent reciprocal- 
lattice points, it is necessary to find the inverse trans- 
formation matrix and apply it to each reciprocal- 
lattice vector in turn. If a newly chosen vector belongs 
to the derivative lattice already defined, it will have 
integral coordinates after this transformation; other- 
wise it will represent a lattice of lower index, the 
reduction factor being the lowest common 
denominator of the fractional components of the 
transformed vector. It was by repeated use of this 
procedure to include all the previous vectors used 
that the index entries of Table 3 were determined. 
When we examine the results, we see that in the first 
case there is a notably large sublattice of index 57 in 
evidence, but the probability that the six largest IEI 
values would define a non-primitive cell, if random, 
is not itself significantly small. However, in the second 
case, the ten (actually fourteen) largest IEI values all 
belong to a sublattice of index 3 and there is a very 
strong indication of non-random behaviour. This lat- 
ter structure was solved as an index-6 derivative 
lattice. 

The author wishes to thank one of the anonymous 
referees for clarification of the symmetry aspects of 
the presentation and the University of Transkei for 
financial support. 
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Abstract 

A new numerical program for the calculation of 
neutron scattering intensities in a complex cell made 
of n concentric cylinders has been developed with 
the purpose of analysing the diffraction data of fluid 
metals under high-temperature and high-pressure 
conditions. A simulation of the experiment on liquid 
Cs at T = 1 6 7 3 K  and P = 8 6 x 1 0  SPa contained in 
such a cell has been performed in order to test the 
accuracy of standard data-analysis procedures 
employed to derive the static structure factor. 

I. Introduction 

In the last few years there has been a great deal of 
interest in the study of fluids at high pressures and /o r  
elevated temperatures. Structural, thermodynamic 
and electronic properties of fluid metals up to their 
liquid-gas critical point have been investigated both 
experimentally (Hensel, Juengst, Noll & Winter, 
1985; Freyland & Hensel, 1985) and theoretically 
(March, 1989, and references therein). Special experi- 
mental high-temperature high-pressure techniques 
have been developed in order to deal with the problem 
of containing highly corrosive metals in uncontami- 
nated form in these extreme thermodynamic condi- 
tions. In particular, a quite complex cell has been 
designed for neutron diffraction studies in these sys- 
tems (Freyland, Hensel & Glaser, 1979) and success- 
fully employed for measurements of the static struc- 
ture factor in liquid Cs (To= 1924K, Pc=92 .5x  

0108-7673/92/040508-08506.00 

10 SPa) and Rb (Tc=2090K,  P c = 1 4 0 x 1 0  SPa) 
(Franz, Freyland, Glaser, Hensel & Schneider, 1980; 
Freyland, Hensel & Glaser, 1984; Winter & 
Bodensteiner, 1988; Winter, Hensel, Bodensteiner & 
Glaser, 1987). The manufacture of such a cell opens 
the possibility of studying the microscopic properties 
of many fluids in critical conditions, even though the 
neutron scattering investigation turns out to be com- 
plex. As described in Freyland, Hensel & Glaser 
(1979), such a cell can be schematically depicted as 
a set of n concentric cylinders of different materials 
representing the sample container, the heater ele- 
ments, the heat shields and the pressure vessel. High 
pressures at the sample can be established by using 
a relatively thin-walled sample container and, at the 
same time, compensating the internal sample pressure 
by surrounding the container with Ar gas under pres- 
sure (Freyland, Hensel & Glaser, 1979). Therefore, 
the compensating gas can be thought of as playing 
the role of an additional cylinder constituting the 
complex cell. The use of such a cell in a neutron 
diffraction measurement entails a high background 
contribution from the sample containment to the total 
scattered intensity. Therefore, accurate data treatment 
is necessary in order to derive the correct static struc- 
ture factor S(Q) from the measured intensities. 

In a previous paper (Petrillo & Sacchetti, 1990), a 
data-reduction procedure applicable to neutron 
diffraction measurements in low-scattering-power 
fluids contained in high-scattering cells has been 
presented. The main purpose of that paper was to 
optimize the subtraction of contributions coming 
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